CE&UKCA EMC Test Report **Project No.** : 2302C096A **Equipment**: Handheld Inkjet Printer Brand Name : BENTSAI Test Model : BT-HH6205 B Series Model : BT-HH6205 D(2), BT-HH6205 A(2), BT-HH6205 C(2), BT-HH6205 E, BT-HH6210 B, BT-HH6210 E, BT-HH6210 A(2), BT-HH6210 C(2), BT-HH6210 D(2), BT-HH6205 F, BT-HH6210 F, BT-HH6205 G, BT-HH6210 G, BT-HH6205 K, BT-HH6210 K, BT-HH6205 Z, BT-HH6210 Z, BT-HH6205 V, BT-HH6210 V, BT-HH6205 P, BT-HH6210 P, BT-HH6205 L, BT-HH6210 L **Applicant**: Zhuhai Bentsai Electronics Co., Ltd. Address : 2/F, Block B, Factory Building 1, 115 Huawei Road, Xiangzhou District, Zhuhai **Manufacturer**: Zhuhai Bentsai Electronics Co., Ltd. Address : 2/F, Block B, Factory Building 1, 115 Huawei Road, Xiangzhou District, Zhuhai **Factory**: Zhuhai Bentsai Electronics Co., Ltd. **Address**: 2/F, Block B, Factory Building 1, 115 Huawei Road, Xiangzhou District, Zhuhai Date of Receipt : May 12, 2023 **Date of Test** : May 15, 2023 ~ May 26, 2023 **Issued Date** : Jun. 30, 2023 Report Version : R00 Test Sample : Engineering Sample No.: DG2023051223 **Standard(s)** : EN 55032:2015+A11:2020 EN 55035:2017+A11:2020 BS EN 55032:2015+A11:2020 BS EN 55035:2017+A11:2020 The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.(Dongguan). Prepared by Jason Liang Approved by Kang Zhang No.3, Jinshagang 1st Road, Dalang, Dongguan, Guangdong, China. Tel: +86-769-8318-3000 Web: www.newbtl.com Service mail: btl_qa@newbtl.com #### **Declaration** **BTL** represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s). **BTL**'s reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports. The report must not be used by the client to claim product certification, approval, or endorsement by CNAS or any other agency. This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval. **BTL**'s laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report. BTL is not responsible for the sampling stage, so the results only apply to the sample as received. The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use. #### Limitation For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective. Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results. | Table of Contents | Page | |--|----------| | REPORT ISSUED HISTORY | 5 | | 1 . SUMMARY OF TEST RESULTS | 6 | | 1.1 TEST FACILITY | 7 | | 1.2 MEASUREMENT UNCERTAINTY | 7 | | 1.3 TEST ENVIRONMENT CONDITIONS | 8 | | 2 . GENERAL INFORMATION | 9 | | 2.1 GENERAL DESCRIPTION OF EUT | 9 | | 2.2 DESCRIPTION OF TEST MODES | 10 | | 2.3 EUT OPERATING CONDITIONS | 11 | | 2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED | 11 | | 2.5 DESCRIPTION OF SUPPORT UNITS | 11 | | 3 . EMC EMISSION TEST | 12 | | 3.1 RADIATED EMISSIONS UP TO 1 GHZ | 12 | | 3.1.1 LIMITS | 12 | | 3.1.2 MEASUREMENT INSTRUMENTS LIST 3.1.3 TEST PROCEDURE | 12
13 | | 3.1.4 DEVIATION FROM TEST STANDARD | 13 | | 3.1.5 TEST SETUP | 13 | | 3.1.6 MEASUREMENT DISTANCE 3.1.7 TEST RESULTS | 14
15 | | 3.1.7 TEST RESULTS 3.2 RADIATED EMISSIONS ABOVE 1 GHZ | 17 | | 3.2.1 LIMITS | 17 | | 3.2.2 MEASUREMENT INSTRUMENTS LIST | 17 | | 3.2.3 TEST PROCEDURE 3.2.4 DEVIATION FROM TEST STANDARD | 18 | | 3.2.4 DEVIATION FROM TEST STANDARD 3.2.5 TEST SETUP | 18
18 | | 3.2.6 MEASUREMENT DISTANCE | 19 | | 3.2.7 TEST RESULTS | 20 | | 4 . EMC IMMUNITY TEST | 22 | | 4.1 STANDARD COMPLIANCE/SEVERITY LEVEL/CRITERIA | 22 | | 4.2 GENERAL PERFORMANCE CRITERIA | 25 | | 4.3 ANNEX B (NORMATIVE) - PRINT FUNCTION | 26 | | 4.3.1 PERFORMANCE CRITERIA | 26 | | 4.4 ELECTROSTATIC DISCHARGE IMMUNITY TEST (ESD) 4.4.1 TEST SPECIFICATION | 27
27 | | 4.4.2 MEASUREMENT INSTRUMENTS | 27 | | 4.4.3 TEST PROCEDURE | 27 | | 4.4.4 DEVIATION FROM TEST STANDARD | 28 | | Table of Contents | Page | |---|--| | 4.4.5 TEST SETUP
4.4.6 TEST RESULTS | 28
29 | | 4.5 RADIATED, RADIO-FREQUENCY, ELECTROMAGNETIC FIELD IMMUNITY TEST (4.5.1 TEST SPECIFICATION 4.5.2 MEASUREMENT INSTRUMENTS 4.5.3 TEST PROCEDURE 4.5.4 DEVIATION FROM TEST STANDARD 4.5.5 TEST SETUP 4.5.6 TEST RESULTS | RS) 31
31
31
31
31
31
32
33 | | 4.6 POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST (PFMF) 4.6.1 TEST SPECIFICATION 4.6.2 MEASUREMENT INSTRUMENTS 4.6.3 TEST PROCEDURE 4.6.4 DEVIATION FROM TEST STANDARD 4.6.5 TEST SETUP 4.6.6 TEST RESULTS | 34
34
34
34
34
35 | | 5 . EUT TEST PHOTO | 37 | ## **REPORT ISSUED HISTORY** | Report No. | Version | Description | Issued Date | Note | |---------------------|---------|--|---------------|-------| | BTL-EMC-1-2302C096A | R00 | This is a supplementary report to the original test report (BTL-EMC-1-2302C096). 1. Update the applicant, manufacturer and factory address. 2. Changed the PCB board, so all test items used original worst case to tested and recorded. In this report only recorded the new test results. The original test results please refer to original report. | Jun. 30, 2023 | Valid | ## 1. SUMMARY OF TEST RESULTS Test procedures according to the technical standards: | Emission | | | | |---------------------------|--|-------------------|------| | Standard(s) | Tes | Test Item | | | | Radiated emiss | sions up to 1 GHz | PASS | | | Radiated emiss | ions above 1 GHz | PASS | | | Radiated emissions from FM receivers | | N/A | | EN 55032:2015+A11:2020 | Conducted emissions AC mains power port | | N/A | | BS EN 55032:2015+A11:2020 | Asymmetric mode conducted emissions | AAN | N/A | | | | Current Probe | N/A | | | | CP+CVP | N/A | | | Conducted differential voltage emissions | | N/A | | Immunity | | | | |--|------------------------------|-----------|--------| | Standard(s) | Ref Standard(s) | Test Item | Result | | EN 55035:2017+A11:2020
BS EN 55035: 2017+A11:2020 | IEC 61000-4-2:2008 | ESD | PASS | | | IEC 61000-4-3:2020 | RS | PASS | | | IEC 61000-4-4:2012 | EFT | N/A | | | IEC 61000-4-5:2014+AMD1:2017 | Surge | N/A | | | IEC 61000-4-6:2013 | CS | N/A | | | IEC 61000-4-8:2009 | PFMF | PASS | | | IEC 61000-4-11:2020 | Dips | N/A | | Standard(s) | Section | Test Item | Result | |----------------------------|---------|-----------|--------| | EN 55035:2017+A11:2020 | 4.2.7 | BIN-R | N/A | | BS EN 55035: 2017+A11:2020 | 4.2.7 | BIN-I | N/A | ## NOTE: (1) "N/A" denotes test is not applicable to this device. #### 1.1 TEST FACILITY The test facilities used to collect the test data in this report is at the location of No.3, Jinshagang 1st Road, Dalang, Dongguan, Guangdong, China. #### 1.2 MEASUREMENT UNCERTAINTY Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2, The BTL measurement uncertainty is less than the CISPR 16-4-2 U_{cispr} requirement. The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k}=2$, providing a level of confidence of approximately 95%. #### A. Radiated emissions up to 1 GHz measurement: | Test Site | Method | Measurement Frequency Range | Ant.
H / V | U,(dB) | |------------------------|-------------------|-----------------------------|---------------|--------| | DG-CB08
(10m) CISPR | 30MHz ~ 200MHz | V | 4.72 | | | | CICDD | 30MHz ~ 200MHz | Н | 4.40 | | | 200MHz ~ 1,000MHz | V | 4.58 | | | | | 200MHz ~ 1,000MHz | Н | 3.70 | #### B. Radiated emissions above 1 GHz measurement: | Test Site | Method | Measurement Frequency Range | U,(dB) | |-----------------|--------|-----------------------------|--------| | DG-CB08
(3m) | CISPR | 1GHz ~ 6GHz | 3.94 | ### C. Immunity Measurement: | Test Site | Method Item | | U | |-----------|-------------------------------|-------------------------------------|--------| | | | Rise time tr | 6.30% | | DC SB03 | G-SR02 IEC 61000-4-2 | Peak current lp | 6.70% | | DG-5R02 | | Current at 30 ns | 6.40% | | | | Current at 60 ns | 6.90% | | DG-CB05 | IEC 61000-4-3
(80MHz~6GHz) | Electromagnetic field immunity test | 2.00dB | | DG-SR05 | IEC 61000-4-8 | Magnetic Field Strength | 2.38% | Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification. ## 1.3 TEST ENVIRONMENT CONDITIONS | Test Item | Temperature | Humidity | Tested By | |-----------------------------------|-------------|----------|--------------| | Radiated emissions up to 1 GHz | 30°C | 55% | Karpin Zhong | | Radiated emissions
above 1 GHz | 26°C | 53% | Karpin Zhong | | Test Item | Temperature | Humidity | Pressure | Tested By | |-----------|-------------|----------|----------|-------------| | ESD | 25°C | 47% | 1009hPa | Chien Li | | RS | 23°C | 54% | 1 | Luther Lai | | PFMF | 24°C | 40% | / | Meers Zhang | ## 2. GENERAL INFORMATION ## 2.1 GENERAL DESCRIPTION OF EUT | Equipment | Handheld Inkjet Printer | |--------------------------------|---| | Brand Name | BENTSAI | | Test Model | BT-HH6205 B | | Series Model | BT-HH6205 D(2), BT-HH6205 A(2), BT-HH6205 C(2),
BT-HH6205 E, BT-HH6210 B, BT-HH6210 E, BT-HH6210 A(2),
BT-HH6210 C(2), BT-HH6210 D(2), BT-HH6205 F,
BT-HH6210 F, BT-HH6205 G, BT-HH6210 G, BT-HH6205 K,
BT-HH6210 K, BT-HH6205 Z, BT-HH6210 Z, BT-HH6205 V,
BT-HH6210 V, BT-HH6205 P, BT-HH6210 P, BT-HH6205 L,
BT-HH6210 L | | Model Difference(s) | The upper cover of the product appearance, the front roller seat of the product and the model name are different. | | Power Source | 1# DC voltage supplied from AC adapter. (Support unit) 2# Supplied from battery. | | Power Rating | 1# DC 5V 2A
2# DC 3.7V | | Connecting I/O Port(s) | 1* DC port
1* USB port | | Classification of EUT | Class A | | Highest Internal Frequency(Fx) | 192MHz | #### Note: 1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual. ## 2.2 DESCRIPTION OF TEST MODES To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively. | Pretest Mode | Description | | | | |--------------|-------------|--|--|--| | Mode 1 | Charging | | | | | Radiated emissions up to 1 GHz Test | | | | | | | |-------------------------------------|----------|--|--|--|--|--| | Final Test Mode Description | | | | | | | | Mode 1 | Charging | | | | | | | Radiated emissions Above 1 GHz Test | | | | | | | |-------------------------------------|----------|--|--|--|--|--| | Final Test Mode Description | | | | | | | | Mode 1 | Charging | | | | | | | ESD, RS, PFMF Test | | | | | | | |-----------------------------|----------|--|--|--|--|--| | Final Test Mode Description | | | | | | | | Mode 1 | Charging | | | | | | #### 2.3 EUT OPERATING CONDITIONS The EUT exercise program used during radiated and/or conducted emission measurement was designed to exercise the various system components in a manner similar to a typical use. The standard test signals and output signal as following: - 1. EUT connected to Adapter via USB Cable. - 2. The USB 2.0 is plugged into EUT. #### 2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED **Ground Plane** Remote system #### 2.5 DESCRIPTION OF SUPPORT UNITS The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests. | Item | Equipment | Mfr/Brand | Model/Type No. | Series No. | |------|-----------|-----------|----------------|------------| | Α | USB 2.0 | N/A | N/A | N/A | | В | Adapter | Huawei | N/A | N/A | | Item | Cable Type | Shielded Type | Ferrite Core | Length | |------|------------|---------------|--------------|--------| | 1 | USB Cable | YES | NO | 1m | ## 3. EMC EMISSION TEST ## 3.1 RADIATED EMISSIONS UP TO 1 GHZ ## **3.1.1 LIMITS** Class A equipment up to 1 GHz | Frequency
Range | | Class A limits | | | |--------------------|----------|----------------|-----------------------------|----------| | MHz | Facility | Distance
m | Detector type/
bandwidth | dB(μV/m) | | 30 - 230 | SAC | 10 | Quasi peak / | 40 | | 230 - 1000 | SAC | 10 | 120 kHz | 47 | #### Notes: - (1) The limit for radiated test was performed according to as following: EN 55032 - (2) The tighter limit applies at the band edges. - (3) Emission level (dBuV/m)=20log Emission level (uV/m). - (4) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Antenna Factor + Cable Loss Amplifier Gain(if use) Margin Level = Measurement Value Limit Value #### 3.1.2 MEASUREMENT INSTRUMENTS LIST | Item | Kind of Equipment | Manufacturer | Type No. | Serial No. | Calibrated until | |------|-----------------------------|-------------------|--------------------------|-------------|------------------| | 1 | Receiver | Keysight | N9038A | MY54450004 | Jul. 03, 2023 | | 2 | MXE EMI Receiver | KEYSIGHT | N9038B | MY62210123 | Nov. 28, 2023 | | 3 | Pre-Amplifier | EMC
INSTRUMENT | EMC 9135 | 980284 | Jul. 03, 2023 | | 4 | Pre-Amplifier | EMC
INSTRUMENT | EMC 9135 | 980283 | Jul. 03, 2023 | | 5 | Trilog-Broadband
Antenna | Schwarzbeck | VULB9168 | 947 | Nov. 02, 2023 | | 6 | Trilog-Broadband
Antenna | Schwarzbeck | VULB9168 | 946 | Sep. 30, 2023 | | 7 | Measurement
Software | Farad | EZ-EMC
Ver.BTL-2ANT-1 | N/A | N/A | | 8 | Multi-Device
Controller | ETS-Lindgren 2090 | | N/A | N/A | | 9 | Controller | MF | MF-7802 | MF780208159 | N/A | | 10 | Attenuator | EMCI | EMCI-N-6-06 | AT-N0671 | Sep. 30, 2023 | | 11 | Attenuator | EMCI | EMCI-N-6-06 | AT-N0670 | Nov. 02, 2023 | | 12 | Cable | RW | LMR400-NMNM-10M | N/A | Dec. 06, 2023 | | 13 | Cable | RW | LMR400-NMNM-7M | N/A | Dec. 06, 2023 | | 14 | Cable | RW | LMR400-NMNM-3.5M | N/A | Dec. 06, 2023 | | 15 | Cable | RW | LMR400-NMNM-8M | N/A | Dec. 06, 2023 | | 16 | Cable | RW | LMR400-NMNM-7M | N/A | Dec. 06, 2023 | | 17 | Cable | RW | LMR400-NMNM-3.5M | N/A | Dec. 06, 2023 | Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year. #### 3.1.3 TEST PROCEDURE - a. The measuring distance of 10 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. - b. The height of the equipment or of the substitution antenna shall be 0.8 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - c. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. - d. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. - e. For the actual test configuration, please refer to the related Item EUT Test Photos. ## 3.1.4 DEVIATION FROM TEST STANDARD No deviation #### 3.1.5 TEST SETUP UP TO 1 GHZ ## 3.1.6 MEASUREMENT DISTANCE Figure C.1 - Measurement distance Figure C.2 - Boundary of EUT, Local AE and associated cabling ## 3.1.7 TEST RESULTS | Test Voltage | AC 230V/50Hz | Polarization | Vertical | |--------------|--------------|--------------|----------| | Test Mode | Mode 1 | | | | | No. | Mk. | . Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Margin | | | |---|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|---------| | - | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | | 1 | | 89.1700 | 45.41 | -22.09 | 23.32 | 40.00 | -16.68 | QP | | | | 2 | | 138.6400 | 43.92 | -17.70 | 26.22 | 40.00 | -13.78 | QP | | | | 3 | * | 191.9900 | 51.35 | -18.67 | 32.68 | 40.00 | -7.32 | QP | | | | 4 | | 384.0500 | 46.35 | -13.59 | 32.76 | 47.00 | -14.24 | QP | | | | 5 | | 407.3300 | 45.66 | -13.04 | 32.62 | 47.00 | -14.38 | QP | | | - | 6 | | 576.1100 | 38.42 | -9.91 | 28.51 | 47.00 | -18.49 | QP | | | Test Voltage | AC 230V/50Hz | Polarization | Horizontal | |--------------|--------------|--------------|------------| | Test Mode | Mode 1 | | | | No. | Mk | c. Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Margin | | | |-----|----|----------|------------------|-------------------|------------------|--------|--------|----------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | | 191.9900 | 44.01 | -18.45 | 25.56 | 40.00 | -14.44 | QP | | | 2 | | 359.8000 | 47.80 | -14.24 | 33.56 | 47.00 | -13.44 | QP | | | 3 | * | 384.0500 | 54.68 | -13.67 | 41.01 | 47.00 | -5.99 | QP | | | 4 | | 407.3300 | 47.87 | -13.04 | 34.83 | 47.00 | -12.17 | QP | | | 5 | | 431.5800 | 48.00 | -12.43 | 35.57 | 47.00 | -11.43 | QP | | | 6 | | 480.0800 | 48.80 | -11.53 | 37.27 | 47.00 | -9.73 | QP | | ## 3.2 RADIATED EMISSIONS ABOVE 1 GHZ ## **3.2.1 LIMITS** Class A equipment above 1 GHz | Frequency
Range | | Class A limits | | | |--------------------|----------|----------------|-----------|----| | MHz | Facility | dB(μV/m) | | | | 1000 - 3000 | | | Average / | 56 | | 3000 - 6000 | FOOATO | 2 | 1 MHz | 60 | | 1000 - 3000 | FSOATS | 3 | Peak / | 76 | | 3000 - 6000 | | | 1 MHz | 80 | #### Notes: - (1) The limit for radiated test was performed according to as following: EN 55032 - (2) The tighter limit applies at the band edges. - (3) Emission level (dBuV/m)=20log Emission level (uV/m). - (4) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use) Margin Level = Measurement Value - Limit Value Required highest frequency for radiated measurement | Highest internal frequency (F _x) | Highest measured frequency | |--|---| | F _x ≤ 108 MHz | 1 GHz | | $108 < F_x \le 500 \text{ MHz}$ | 2 GHz | | 500 < F _x ≤ 1000 MHz | 5 GHz | | F _x > 1 GHz | 5 x F _x up to a maximum of 6 GHz | #### 3.2.2 MEASUREMENT INSTRUMENTS LIST | Item | Kind of Equipment | Manufacturer | Type No. | Serial No. | Calibrated until | |------|----------------------------|--------------|-----------------------------|--------------|------------------| | 1 | Horn Antenna | EMCO | 3115(3m) | 9605-4803 | Jun. 16, 2023 | | 2 | Amplifier | Agilent | 8449B | 3008A02333 | Jan. 08, 2024 | | 3 | MXE EMI Receiver | KEYSIGHT | N9038B | MY62210123 | Nov. 28, 2023 | | 4 | Measurement
Software | Farad | EZ-EMC
Ver.BTL-2ANT-1 | N/A | N/A | | 5 | Multi-Device
Controller | ETS-Lindgren | 2090 | N/A | N/A | | 6 | Controller | MF | MF-7802 | MF780208159 | N/A | | 7 | Cable | Micable | RWLP50-4.0A-S
MSM-12M-KJ | 20191107 002 | Mar. 02, 2024 | Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year. ## 3.2.3 TEST PROCEDURE - a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. - b. The height of the equipment or of the substitution antenna shall be 0.8 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - c. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then AVG detector mode re-measured. - d. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. - e. For the actual test configuration, please refer to the related Item EUT Test Photos. #### 3.2.4 DEVIATION FROM TEST STANDARD No deviation #### 3.2.5 TEST SETUP #### **ABOVE 1 GHZ** ## 3.2.6 MEASUREMENT DISTANCE Figure C.1 - Measurement distance Figure C.2 - Boundary of EUT, Local AE and associated cabling ## 3.2.7 TEST RESULTS | Test Voltage | AC 230V/50Hz | Polarization | Vertical | |--------------|--------------|--------------|----------| | Test Mode | Mode 1 | | | | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Margin | | | |-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | | 2455.000 | 43.47 | 3.87 | 47.34 | 76.00 | -28.66 | peak | | | 2 | * | 2455.000 | 34.58 | 3.87 | 38.45 | 56.00 | -17.55 | AVG | | | 3 | | 2592.500 | 41.88 | 4.31 | 46.19 | 76.00 | -29.81 | peak | | | 4 | | 2592.500 | 32.98 | 4.31 | 37.29 | 56.00 | -18.71 | AVG | | | 5 | , | 3545.000 | 35.50 | 8.44 | 43.94 | 80.00 | -36.06 | peak | | | 6 | | 3545.000 | 25.27 | 8.44 | 33.71 | 60.00 | -26.29 | AVG | | | 7 | | 4065.000 | 34.92 | 9.59 | 44.51 | 80.00 | -35.49 | peak | | | 8 | | 4065.000 | 24.99 | 9.59 | 34.58 | 60.00 | -25.42 | AVG | | | 9 | | 4857.500 | 34.24 | 12.24 | 46.48 | 80.00 | -33.52 | peak | | | 10 | | 4857.500 | 24.53 | 12.24 | 36.77 | 60.00 | -23.23 | AVG | | | 11 | | 5630.000 | 33.31 | 15.30 | 48.61 | 80.00 | -31.39 | peak | | | 12 | | 5630.000 | 22.92 | 15.30 | 38.22 | 60.00 | -21.78 | AVG | | | Test Voltage | AC 230V/50Hz | Polarization | Horizontal | |--------------|--------------|--------------|------------| | Test Mode | Mode 1 | | | | No. | Mk | . Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Margin | | | |-----|----|----------|------------------|-------------------|------------------|--------|--------|----------|---------| | | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | Comment | | 1 | | 1915.000 | 38.44 | 2.16 | 40.60 | 76.00 | -35.40 | peak | | | 2 | | 1915.000 | 27.94 | 2.16 | 30.10 | 56.00 | -25.90 | AVG | | | 3 | | 2537.500 | 41.22 | 4.10 | 45.32 | 76.00 | -30.68 | peak | | | 4 | * | 2537.500 | 31.13 | 4.10 | 35.23 | 56.00 | -20.77 | AVG | | | 5 | | 3342.500 | 36.10 | 7.55 | 43.65 | 80.00 | -36.35 | peak | | | 6 | | 3342.500 | 26.04 | 7.55 | 33.59 | 60.00 | -26.41 | AVG | | | 7 | | 4360.000 | 34.22 | 10.36 | 44.58 | 80.00 | -35.42 | peak | | | 8 | | 4360.000 | 24.47 | 10.36 | 34.83 | 60.00 | -25.17 | AVG | | | 9 | | 5247.500 | 34.60 | 13.84 | 48.44 | 80.00 | -31.56 | peak | | | 10 | | 5247.500 | 24.57 | 13.84 | 38.41 | 60.00 | -21.59 | AVG | | | 11 | | 5602.500 | 34.06 | 15.21 | 49.27 | 80.00 | -30.73 | peak | | | 12 | | 5602.500 | 23.96 | 15.21 | 39.17 | 60.00 | -20.83 | AVG | | ## 4. EMC IMMUNITY TEST ## 4.1 STANDARD COMPLIANCE/SEVERITY LEVEL/CRITERIA | Tests Standard No. | Test Specification Level / Test Mode | Test Ports | Criteria | |--|---|--------------------------------------|----------| | Electrostatic discharge | ±8kV air discharge
±4kV contact discharge
(Direct Mode) | Enclosure | В | | IEC 61000-4-2
(ESD) | ±4kV HCP discharge
±4kV VCP discharge
(Indirect Mode) | Enclosure | В | | Continuous RF electromagnetic field disturbances,swept test IEC 61000-4-3 (RS) | 80 MHz to 1000 MHz
3V/m(unmodulated, r.m.s),
1 kHz, 80%,
AM modulated | Enclosure | А | | Continuous RF electromagnetic field disturbances, spot test IEC 61000-4-3 (RS) | 1800 MHz, 2600MHz,
3500 MHz, 5000MHz(±1 %)
3V/m(unmodulated, r.m.s),
1 kHz, 80%,
AM modulated | Enclosure | А | | Electrical fast transient/burst | ±0.5kV(peak) 5/50ns Tr/Th 5kHz Repetition Frequency (100kHz Repetition Frequency for xDSL port) | Analogue/digital data ports (NOTE 2) | В | | immunity
IEC 61000-4-4
(EFT) | ±0.5kV(peak)
5/50ns Tr/Th
5kHz Repetition Frequency | DC network power ports (NOTE 2) | В | | | ±1 kV(peak)
5/50ns Tr/Th
5kHz Repetition Frequency | AC mains power ports | В | | | Port Type: unshielded symmetrical Apply: lines to ground | | | |--|---|---|---| | | Primary protection is Intended
±1 kV and ±4 kV
10/700(5/320)Tr/Th μs | -Analogue/digital data ports_ | С | | | Primary protection is not Intended
±1 kV
10/700(5/320) Tr/Th µs | (NOTE 1) & (NOTE 2) | С | | | Port type: coaxial or shielded Apply: shield to ground | | | | Surge immunity
EC 61000-4-5
Surge) | ±0.5 kV
1.2/50(8/20) Tr/Th μs | Analogue/digital data ports (NOTE 1) & (NOTE 2) | В | | | line to reference ground for each individual line: ±0.5 kV(peak) 1.2/50(8/20) Tr/Th µs | DC network power ports (NOTE 2) | В | | | ±1 kV(peak) 1.2/50(8/20) Tr/Th μs (line to line) ±2 kV(peak) 1.2/50(8/20) Tr/Th μs (line to earth or ground) | AC mains power ports | В | | | 0.15 MHz to 10 MHz 3V(unmodulated, r.m.s), 10 MHz to 30 MHz 3V to 1V(unmodulated, r.m.s), 30 MHz to 80 MHz 1V(unmodulated, r.m.s), 1kHz 80%, AM 150Ω source impedance | Analogue/digital data ports (NOTE 2) | Α | | Continuous induced RF
disturbances
IEC 61000-4-6
(CS) | 0.15 MHz to 10 MHz 3V(unmodulated, r.m.s), 10 MHz to 30 MHz 3V to 1V(unmodulated, r.m.s), 30 MHz to 80 MHz 1V(unmodulated, r.m.s), 1kHz 80%, AM 150Ω source impedance | m.s), DC network power ports (NOTE 2) | | | | 0.15 MHz to 10 MHz 3V(unmodulated, r.m.s), 10 MHz to 30 MHz 3V to 1V(unmodulated, r.m.s), 30 MHz to 80 MHz 1V(unmodulated, r.m.s), 1kHz 80%, AM 150Ω source impedance | AC mains power ports | Α | | Power frequency magnetic field immunity IEC 61000-4-8 (PFMF) | 50 Hz or 60Hz,
1A/m(r.m.s)□ | Enclosure | Α | |--|---|--|-------------| | Voltage dips, short interruptions
and voltage variations immunity
IEC 61000-4-11
(Dips) | Voltage dips: Residual voltage < 5% 0.5 cycle Residual voltage < 70% 25 cycle (50Hz), 30 cycle (60Hz) Voltage interruptions: Residual voltage < 5% 250 cycle (50Hz), 300 cycle (60Hz) | AC Power Ports | B
C
C | | Broadband impulse noise
disturbances,repetitive | 0.15MHz to 0.5 MHz
107dBuV
0.5 MHz to 10 MHz
107dBuV to 36dBuV
10 MHz to 30 MHz
36dBuV to 30 dBuV | Analogue/digital data ports (Applicable only to CPE xDSL ports) | А | | (BIN-R) | 0.70 ms
8.3 ms(for 60Hz)
10 ms(for 50Hz) | Analogue/digital data ports (Apply period based on the AC mains frequency) | А | | Broadband impulse noise | 0.15MHz to 30 MHz
110dBuV | Analogue/digital data ports (Applicable only to CPE xDSL ports) | В | | disturbances,isolated
(BIN-I) | 0.24 ms
10 ms
300 ms | Analogue/digital data ports (Apply all burst durations) | В | ## Note. - 1) Applicable only to ports which, according to the manufacturer's specification, may connect directly to outdoor cables. - 2) Applicable only to ports which, according to the manufacturer's specification, support cable lengths greater than 3 m. ## **4.2 GENERAL PERFORMANCE CRITERIA** According to **EN 55035** standards, the general performance criteria as following: | Criterion A | The equipment shall continue to operate as intended without operator intervention. No degradation of performance, loss of function or change of operating state is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended. | |-------------|--| | Criterion B | During the application of the disturbance, degradation of performance is allowed. However, no unintended change of actual operating state or stored data is allowed to persist after the test. After the test, the equipment shall continue to operate as intended without operator intervention; no degradation of performance or loss of function is allowed, below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level (or the permissible performance loss), or recovery time, is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended. | | Criterion C | Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. A reboot or re-start operation is allowed. Information stored in non-volatile memory, or protected by a battery backup, shall not be lost. | ## 4.3 ANNEX B (NORMATIVE) - PRINT FUNCTION #### 4.3.1 PERFORMANCE CRITERIA #### Performance criterion A: Apply criterion A as defined in GENERAL PERFORMANCE CRITERIA. Additionally, the following shall not occur as a consequence of the application of the disturbance: - · change of operating state; - unintended pausing of the print operation; - a change of print quality or legibility, as appropriate to the test pattern; - · change of character font; - · unintended line feed; - · unintended page feed; - paper feed failure. #### Performance criterion B: Apply criterion B as defined in GENERAL PERFORMANCE CRITERIA with the following specifics and additional limitations. Paper feed failures are allowed only if, after removal of the jammed sheets, the job is automatically recovered and there is no loss of printed information. Any low-quality print output caused by the application of the disturbance shall not continue beyond the sheet of media being printed, or beyond the typical length of a finished page or sheet printed from continuous roll media. False indicators are permitted during the test provided that a normal operator response to that false indicator is simple (such as pressing a button). False indicators are not acceptable if they would cause the user to discard printing supplies such as ink, toner or paper, when those supplies are actually not empty or faulty. Any false indicator shall either clear automatically or after the operator's response. After the disturbance, the print function may print the remainder of the print job at a quality level within the manufacturer's specifications. Alternately, the print function may halt processing of a print job as a result of the disturbance, but only if the operator is capable of reprinting the job (for example, a fax printing job where the image to be printed still resides in local memory). Automatically restarting the print job from the beginning is also acceptable. In any scenario, the pairing of front and back images during double-sided printing shall be correct. #### Performance criterion C: Apply criterion C as defined in GENERAL PERFORMANCE CRITERIA. ## 4.4 ELECTROSTATIC DISCHARGE IMMUNITY TEST (ESD) #### 4.4.1 TEST SPECIFICATION | Basic Standard | IEC 61000-4-2 | |----------------------|---------------------------------| | Discharge Impedance | 330 ohm / 150 pF | | Required Performance | В | | Discharge Voltage | Air Discharge: ±2kV, ±4kV, ±8kV | | | Contact Discharge: ±2kV, ±4kV | | Polarity | Positive & Negative | | Number of Discharge | 20 times at each test point | | Discharge Mode | Single Discharge | | Discharge Period | 1 second | #### 4.4.2 MEASUREMENT INSTRUMENTS | | Item | Kind of Equipment | Manufacturer | Type No. | Serial No. | Calibrated until | |---|------|-------------------|--------------|----------|------------|------------------| | Ī | 1 | ESD Generator | TESEQ AG | NSG 437 | 450 | Nov. 14, 2023 | Remark: "N/A" denotes no model name, no serial No. or no calibration specified. All calibration period of equipment list is one year. #### 4.4.3 TEST PROCEDURE The test generator necessary to perform direct and indirect application of discharges to the EUT in the following manner: a. The test shall be performed with single discharges. On each pre-selected point at least 10 single discharges (in the most sensitive polarity) shall be applied. NOTE 1 The minimum number of discharges applied is depending on the EUT; for products with synchronized circuits the number of discharges should be larger. For the time interval between successive single discharges an initial value of 1 s is recommended. Longer intervals may be necessary to determine whether a system failure has occurred. NOTE 2 The points to which the discharges should be applied may be selected by means of an explor ation carried out at a repetition rate of 20 discharges per second, or more. Vertical Coupling Plane (VCP): The coupling plane, of dimensions 0.5m x 0.5m, is placed parallel to, and positioned at a distance 0.1m from, the EUT, with the Discharge Electrode touching the coupling plane. The four faces of the EUT will be performed with electrostatic discharge. Horizontal Coupling Plane (HCP): The coupling plane is placed under to the EUT. The generator shall be positioned vertically at a distance of 0.1m from the EUT, with the Discharge Electrode touching the coupling plane. The four faces of the EUT will be performed with electrostatic discharge. ### b. For TABLE-TOP equipment: The configuration consisted of a wooden table 0.8 meters high standing on the Ground Reference Plane. The GRP consisted of a sheet of aluminum at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system. A Horizontal Coupling Plane (1.6m x 0.8m) was placed on the table and attached to the GRP by means of a cable with 940k total impedance. The equipment under test was installed in a representative system as described in IEC 61000-4-2, and its cables were placed on the HCP and isolated by an insulating support of 0.5mm thickness. A distance of1-meter minimum was provided between the EUT and the walls of the laboratory and any other metallic structure. ## 4.4.4 DEVIATION FROM TEST STANDARD No deviation ## 4.4.5 TEST SETUP ## 4.4.6 TEST RESULTS | Test Voltage | AC 230V/50Hz | |--------------|--------------| | Test Mode | Mode 1 | | Mode | Air Discharge | | | | | | Contact Discharge | | | | | | | | |----------|---------------|----|----|----|-----|----|-------------------|----|-----|----|-----|----|-----|----| | | 2 | ۲V | 41 | ۲V | 8 | kV | - I | ٠V | - k | :V | - k | ۲V | - k | ۲V | | Location | Р | Ν | Р | Ν | Р | N | Р | Ν | Р | N | Р | N | Р | N | | 1 | Α | Α | В | В | В | В | - | ı | - | - | - | - | - | - | | 2 | Α | Α | В | В | В | В | - | - | - | - | - | - | - | - | | 3 | Α | Α | В | В | В | В | - | ı | - | - | - | - | - | - | | 4 | Α | Α | В | В | В | В | - | - | - | - | - | - | - | - | | Criteria | В | | | | - B | | | - | | | | | | | | Result | В | | | | | - | | ١ | I/A | | - | | | | | Mode | HCP Contact Discharge | | | | | VCP Contact Discharge | | | | | | | |------------|-----------------------|----|-----|---|------|-----------------------|-----|---|-----|---|------|---| | | 21 | ۲V | 4kV | | - kV | | 2kV | | 4kV | | - kV | | | Location | Р | N | Р | N | Р | N | Р | N | Р | Ν | Р | N | | Left side | Α | Α | Α | Α | - | - | Α | Α | Α | Α | - | - | | Right side | Α | Α | Α | Α | - | - | Α | Α | Α | Α | - | - | | Front side | Α | Α | Α | Α | - | - | Α | Α | Α | Α | - | - | | Rear side | Α | Α | Α | Α | - | - | Α | Α | Α | Α | - | - | | Criteria | В | | | _ | | В | | | | | - | | | Result | A | | | | - A | | | - | | | | | ## Note: - 1) P/N denotes the Positive/Negative polarity of the output voltage. - 2) N/A denotes test is not applicable in this test report ## PHOTO(S) SHOWN THE LOCATION(S) OF ESD EVALUATED ### 4.5 RADIATED, RADIO-FREQUENCY, ELECTROMAGNETIC FIELD IMMUNITY TEST (RS) #### 4.5.1 TEST SPECIFICATION | Basic Standard | IEC 61000-4-3 | |----------------------|--| | | | | Required Performance | A | | Frequency Range | 80 MHz - 1000 MHz, | | | 1800 MHz, 2600 MHz, 3500 MHz, 5000MHz (±1 %) | | Field Strength | 3 V/m(unmodulated, r.m.s) | | Modulation | 1 kHz Sine Wave, 80%, AM Modulation | | Frequency Step | 1% of fundamental | | Polarity of Antenna | Horizontal and Vertical | | Test Distance | 3 m | | Antenna Height | 1.55 m | | Dwell Time | 3 seconds | #### 4.5.2 MEASUREMENT INSTRUMENTS | Item | Kind of Equipment | Manufacturer | Type No. | Serial No. | Calibrated until | |------|--------------------------------|--------------|------------------|------------|------------------| | 1 | Antenna | ETS | 3142B | 26419 | Dec. 06, 2023 | | 2 | Amplifier | AR | 50S1G4A | 326720 | Jan. 08, 2024 | | 3 | MXG Analog Signal
Generator | Agilent | N5181A | MY49060710 | Jul. 03, 2023 | | 4 | Power amplifier | MILMEGA | AS1860-50 | 1064834 | Jan. 08, 2024 | | 5 | Microwave LogPer. Antenna | Schwarzbeck | STLP 9149 | 9149-277 | Apr. 15, 2024 | | 6 | Power amplifier | MILMEGA | 80RF1000-250 | 1064833 | Jan. 08, 2024 | | 7 | Measurement
Software | Farad | (EZ-RS)V2.0.1.3 | N/A | N/A | Remark: "N/A" denotes no model name, no serial No. or no calibration specified. All calibration period of equipment list is one year. ## 4.5.3 TEST PROCEDURE The EUT and support equipment are in a fully-anechoic chamber. The testing distance from antenna to the EUT was 3 meters. For TABLE-TOP equipment: The EUT installed in a representative system as described in IEC 61000-4-3 was placed on a non-conductive table 0.8 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions. - a. The field strength level was 3 V/m(unmodulated, r.m.s). - b. The frequency range is swept from 80 MHz to 1000 MHz, with the signal 80% amplitude modulated with a 1 kHz sine wave. Where the frequency range is swept incrementally, the step size was 1% of fundamental. - c. The dwell time at each frequency shall be not less than the time necessary for the EUT to be able to respond. - d. The test was performed with the EUT exposed to both vertically and horizontally polarized fields on each of the four sides. #### 4.5.4 DEVIATION FROM TEST STANDARD No deviation ## 4.5.5 TEST SETUP a) For Continuous induced RF disturbances ## 4.5.6 TEST RESULTS | Test Voltage | AC 230V/50Hz | |--------------|--------------| | Test Mode | Mode 1 | | Frequency Range
(MHz) | RF Field
Position | R.F.
Field Strength | Modulation | Azimuth | Criterion | Result | |--------------------------|----------------------|------------------------|--------------|------------|-----------|--------| | 80 - 1000 | H/V | 3V/m | AM Modulated | 0
90 | A | А | | 00 1000 | | | 1000Hz, 80% | 180
270 | | | | 1800, 2600, | | | | 0 | - A | | | 3500, 5000 | H/V | 3V/m | AM Modulated | 90 | | Α | | (±1%) | 117 V | 37/111 | 1000Hz, 80% | 180 | | A | | (±170) | | | | 270 | | | ## 4.6 POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST (PFMF) #### **4.6.1TEST SPECIFICATION** | Basic Standard | IEC 61000-4-8 | |----------------------|-------------------------| | Required Performance | Α | | Frequency Range | 50/60Hz | | Field Strength | 1 A/m | | Observation Time | 1 minute | | Inductance Coil | Rectangular type, 1mx1m | #### 4.6.2 MEASUREMENT INSTRUMENTS | Item | Kind of Equipment | Manufacturer | Type No. | Serial No. | Calibrated until | | |------|----------------------------------|---------------|--------------------------|------------|------------------|--| | 1 | Magnetic Field test
Generator | FCC | F-1000-4-8-
G-125A | 4032 | Jan. 08, 2024 | | | 2 | Magnetic Field immunity loop | Thermo KeyTek | F-1000-4-8/9
/10-L-1M | 4024 | Jan. 08, 2024 | | Remark: "N/A" denotes no model name, no serial No. or no calibration specified. All calibration period of equipment list is one year. #### 4.6.3 TEST PROCEDURE For TABLE-TOP equipment: The equipment shall be subjected to the test magnetic field by using the induction coil of standard dimension (1 m \times 1 m). The induction coil shall then be rotated by 90 degrees in order to expose the EUT to the test field with different orientations. The other condition as following manner: - a. The equipment cabinets shall be connected to the safety earth directly on the GRP via the earth terminal of the EUT. - b. The cables supplied or recommended by the equipment manufacturer shall be used. 1 meter of all cables used shall be exposed to the magnetic field. ## 4.6.4 DEVIATION FROM TEST STANDARD No deviation ## 4.6.5 TEST SETUP ## 4.6.6 TEST RESULTS | Test Voltage | AC 230V/50Hz | |--------------|--------------| | Test Mode | Mode 1 | ## 50Hz | Test Mode | Test Level | Antenna aspect | Duration | Criteria | Results | |-----------|------------|----------------|----------|----------|---------| | Enclosure | 1 A/m | Х | 60s | Α | Α | | Enclosure | 1 A/m | Y | 60s | Α | Α | | Enclosure | 1 A/m | Z | 60s | Α | А | ## 60Hz | Test Mode | Test Level | Antenna aspect | Duration | Criteria | Results | |-----------|------------|----------------|----------|----------|---------| | Enclosure | 1 A/m | Х | 60s | Α | Α | | Enclosure | 1 A/m | Y | 60s | Α | Α | | Enclosure | 1 A/m | Z | 60s | А | А | ## **5. EUT TEST PHOTO** ## Electrostatic discharge immunity Radiated, radio-frequency, electromagnetic field immunity – Up to 1GHz Power frequency magnetic field immunity **End of Test Report**